
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 57:329–354
Published online 6 November 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1637

Combined interface boundary condition method for coupled
thermal simulations

B. Roe1, R. Jaiman1, A. Haselbacher2 and P. H. Geubelle1,∗,†

1University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
2University of Florida, Gainesville, FL 32611, U.S.A.

SUMMARY

A new procedure for modeling the conjugate heat-transfer process between fluid and structure subdomains
is presented. The procedure relies on higher-order combined interface boundary conditions (CIBC) for
improved accuracy and stability. Traditionally, continuity of temperature and heat flux along interfaces is
satisfied through algebraic jump conditions in a staggered fashion. More specifically, Dirichlet temperature
conditions are usually imposed on the fluid side and Neumann heat-flux conditions are imposed on the
solid side for the stability of conventional sequential staggered procedure. In this type of treatment,
the interface introduces additional stability constraints to the coupled thermal simulations. By utilizing the
CIBC technique on the Dirichlet boundary conditions, a staggered procedure can be constructed with the
same order of accuracy and stability as those of standalone computations. Using the Godunov–Ryabenkii
normal-mode analysis, a range of values of the coupling parameter is found that yields a stable and accurate
interface discretization. The effectiveness of the method is investigated by presenting and discussing
performance evaluation data using a 1D finite-difference formulation for each subdomain. Copyright q
2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The thermal interaction between fluid and solid subdomains plays an important role in a wide
range of multiphysics problems, such as heating of space vehicles in hypersonic flow [1], heating
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and cooling of turbine blades in jet engines [2], and thermoelastic deformation of a structure due
to aerodynamic heating [3]. One way of modeling the above phenomena is to use a monolithic
(i.e. tightly coupled) discretization for both solid and fluid subdomains with the interface boundary
conditions [4, 5]. However, one generally solves different equations in the solid and fluid subdo-
mains: Typically, the unsteady thermal diffusion equation is computed in the solid subdomain,
and the Navier–Stokes equations supplemented by appropriate turbulence models are solved in the
fluids subdomain. In addition, the discretization approaches are often different: Commonly, the
finite-element method is used in the solid subdomain, whereas the finite-volume method is adopted
in the fluid subdomain. These differences can lead to difficulties in developing a computationally
efficient monolithic scheme.

A natural way of avoiding such difficulties is to solve the coupled thermal equations in a
partitioned manner. In a partitioned solution procedure, the fluid and solid subdomains are solved
sequentially on decomposed non-overlapping subdomains. A key component of a partitioned
procedure is the formulation and implementation of the interface conditions characterizing the
fluid–structure coupling. The fluid and structure equations are alternately integrated in time by
separate solvers with the aid of Dirichlet and Neumann boundary conditions along the interface.
This technique for solving coupled mechanical system was introduced by Felippa and Park [6],
which is often referred to the conventional sequential staggered (CSS) procedure.

For conjugate heat-transfer problems without deformation, Giles [7] demonstrated that the fluid
subdomain should be given a Dirichlet condition for temperature continuity, while the solid subdo-
main should be subjected to a Neumann condition for heat-flux continuity to maximize stability
when both subdomains are discretized with finite-difference methods. As shown in [7, 8], the
stability restriction of the CSS procedure is more restrictive than those of the individual subdo-
mains. The stability analyses were conducted using the Godunov and Ryabenkii [9] method and the
analytical results were verified numerically. In [8], special emphasis was placed on the effect of the
interface motion on the stability limit for both finite-difference and finite-volume/finite-element
discretizations of the fluid and solid subdomains. The results indicated that the stability properties
of the explicit CSS procedure are strongly dependent on the interface characteristics, e.g. interface
velocity, relative physical (e.g. mass density, heat capacities), and geometric properties (e.g. mesh
size) along the interface. Additionally, the CSS scheme suffers from a time lag between the inte-
gration of the coupled thermal equations. This time lag leads to an artificial energy production,
which may cause numerical instability in the coupled thermal simulations. A similar phenomenon
has been observed in 1D model piston problem for fluid–structure interaction (FSI) in [10].
A special treatment is thus required to counteract energy production in the staggered scheme.

In this study, we present a new coupling scheme that reduces and eliminates stability constraints
associated with the interface treatment, while preserving the explicit ‘loosely coupled’ nature of
the solution procedure. The new coupling scheme, referred to as the combined interface boundary
condition (CIBC) scheme, consists of partitioning the coupled subdomain and imposing interface
conditions that relax the temperature continuity (Dirichlet) condition. Instead, higher-order correc-
tions that are applied to obtain new interface values with appropriate compensation may counteract
with the artificial energy production caused by the staggering process. A similar approach has been
used in [11, 12] to show stability of linearized FSI using matching and non-matching meshes. To
the best of our knowledge, this method has not been considered in any previous studies of transient
conjugate heat-transfer problems. Our emphasis hereafter is to study the numerical stability and
accuracy of the CIBC scheme with the aid of explicit 1D loosely coupled thermal system. A variant
of the CIBC scheme has been developed and implemented for nonlinear FSI using unstructured
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finite-volume formulation in the fluid subdomain and finite-element discretization in the structural
subdomain [13].

Of interest in this work is the 1D thermal diffusion problem with a moving interface
described by

�C
�T
�t

+�Cv0
�T
�x

=−�q
�x

with q=−�
�T
�x

(1)

where T (x, t) represents the temperature field, q(x, t) is the heat flux, � is the density, C is
the relevant specific heat, v0 is the interface velocity, and � is the thermal conductivity. The
model equation (1) can be used to represent each subdomain, although the material parameters
are discontinuous across the interface. Throughout this article, �, C , v0, and � are assumed to be
constant in each subdomain. Each subdomain can represent either fluid or solid media.

Following the convention adopted by Giles [7], the subdomain that passed the Dirichlet condition
is represented by + subscripts, while the subdomain that passed the Neumann condition is repre-
sented by − subscripts. Based on the results of [7, 8], the + and − subdomains should represent
the fluid and solid, respectively, for maximum stability. Hence, the terms ‘fluid subdomain’ and ‘+
subdomain’ are used interchangeably, and similarly for ‘solid subdomain’ and ‘− subdomain’. For
the fluid subdomain �+, C is the specific heat at constant volume CV . For the solid subdomain �−,
C is equal to the specific heat CP . The boundary conditions as x→±∞ are that the temperature
field asymptotes to constant values T±∞, and hence the heat flux tends to zero. At the interface
�, the Dirichlet and Neumann continuity conditions are given by

T+ =T− and q+ =q− (2)

We discretize both subdomains with the finite-difference technique. As discussed in [7], a stability
analysis for this 1D coupled thermal model problem allows us to generate a necessary stability
condition for more complex 2D and 3D computations.

The remainder of this article is organized as follows. Section 2 summarizes the CSS scheme,
and the formulation and implementation of the CIBC method are described in Section 3. In
Section 4, the stability of the CIBC scheme is analyzed using the Godunov–Ryabenkii theory. The
stability analysis is verified numerically in Section 5, where results of an accuracy study are also
reported.

2. CSS SCHEME

In partitioned staggered procedures, the fluid and solid thermal fields are commonly discretized in
space by different schemes and integrated in time by a staggered numerical scheme (see Figure 1).
A simple and popular partitioned procedure for solving conjugate heat-transfer problems is the
CSS scheme [6] whose generic cycle is described in Algorithm 1. For simplicity, we first consider
the particular case of a stationary interface for the 1D coupled thermal system, for which (1) takes
the form

c
�T
�t

=−�q
�x

with q=−�
�T
�x

(3)

where c=�C . Most of the derivations and results summarized in this paper pertain to the stationary
interface case, while the more complex moving interface problem is discussed in Section 5.2.
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Algorithm 1. Explicit CSS scheme for the coupled thermal problem

1. Start from initial temperature fields prescribed in both subdomains
2. Update temperature solution as follows:
(a) Advance heat equation for solid (−) subdomain using known interface heat flux qn0−

c−
�T−
�t

∣∣∣∣n =− �q−
�x

∣∣∣∣n in �−

(b) Impose Dirichlet condition on the interface boundary of fluid (+)

T n
0+ =(1−�)T n

0− +�T n+1
0− on � where �∈[0,1]

(c) Advance heat equation for fluid (+) subdomain using known interface temperature T n
0+

c+
�T+
�t

∣∣∣∣n =− �q+
�x

∣∣∣∣n in �+

(d) Extract interface heat flux qn+1
0+ and impose Neumann condition on the interface boundary

of solid (−) subdomain

qn+1
0− =(1−�)qn0+ +�qn+1

0+ on � where �∈[0,1]

In Algorithm 1, |n denotes the current time level for the derivatives, and � and � are weighting
parameters to interpolate the interface solutions between the time levels n and n+1. In the case of
�=0 and �=0, the solutions at time level n+1 is ignored and the previous solution at time step n
is transferred to the respective subdomains. This method is referred to a parallel conventional
staggered method [6], since the fluid and structural subdomains can start their computations at the
same time level and perform their inner subdomain integrations in a parallel way. When �=1 and
�=1, the CSS method described above is obtained. Selecting values between zero and one for �
and � may result in an under-relaxed staggered scheme that usually introduces spurious dissipation
to the coupled system.

For non-overlapping interfaces, the governing equation is not applied along the interface. Instead,
the continuity conditions given by (2) are enforced sequentially. This time-stepping approach may
suffer significantly from destabilizing effects introduced by the interface conditions. Instability
associated with the interface may depend on relative physical and discretization parameters of the
neighboring subdomains, e.g. heat capacity, density, mesh resolutions, and time steps. Moreover,
due to obvious time lag between the �+ and �− computations, sequential staggered solution
techniques can be only formally first-order accurate in time when no extrapolations are used,
although the individual subdomains may be higher-order accurate.

For these reasons, it is often attempted to correct these deficiencies in partitioned loosely
coupled framework by performing inner- or pseudo-iterations between each pair of consecutive
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Figure 1. Schematic of conventional sequential staggered (CSS) scheme for �=1 and
�=1. Step labels 2(a)–(d) refer to Algorithm 1.

time stations. Sometimes such staggered procedures are referred to as strong coupling methods
[14] in the literature of aeroelasticity. However, these pseudo-iterations increase the complexity
of the implementation of conjugate heat-transfer analyses as well as the computational cost of
each time step. These drawbacks of staggered methods motivate us to construct a new coupling
procedure for improving information exchange across the interface, as described in the following
section.

3. COMBINED INTERFACE BOUNDARY CONDITIONS METHOD

3.1. Overview

Owing to inherent flexibility in the partitioned loosely coupled method, it is relatively easy to
construct various iterative coupling procedures at both the conceptual and algorithmic levels.
However, it may be a challenging task to design a partitioned method that provides temporal
accuracy and numerical stability. The CIBC approach achieves improved stability and precision by
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solving additional partial differential equations (PDEs) for the interface quantities based on their
space and time derivatives.

The CIBC scheme shares features with the iterative interface relaxation procedure [15, 16],
which involves a relaxation parameter and iterates the interface procedure at each pseudo-time step.
In [15, 16], some guidelines are also given on the optimal choice of the relaxation parameter. As
in interface relaxation procedures, the CIBC scheme involves a coupling parameter for combining
the error in heat-flux rate (i.e. history effects) with the net heat-flux gradient with the goal of
correcting the Dirichlet condition. The derivations presented in this section assume a non-moving
interface, i.e. v0=0. The more general case for which v0 �=0 is discussed in Section 5.2.

3.2. Formulation and algorithm

In the conventional staggered scheme, the governing equation of each subdomain has no influence
along the interface. Instead, the continuity of heat flux (Neumann condition) and temperature
continuity (Dirichlet condition) given by (2) are enforced. By contrast, in the CIBC method
formulation, the interface solution is influenced explicitly by the neighboring subdomains. For the
coupled thermal problem, specific residual operators for the Dirichlet condition RD and Neumann
condition RN are given by

RD
(

�T0−
�t

,
�q0−
�t

,
�q0+
�n

,
�q0+
�t

)
=0, RN(q0+,q0−)=0 (4)

where (�q0+/�n) denotes the derivative of the fluid heat-flux q0+ with respect to the outward
normal n along the interface �. Based on the current solutions on both sides of the interface,
these operators calculate successive corrections to the solution on the interface �. Although the
coupling scheme described in [12] calls for corrections of both the Dirichlet and Neumann boundary
conditions, the treatment described hereafter deals with the modification of the Dirichlet condition
only. This approach is used because preliminary numerical tests demonstrated no additional stability
enhancement if the Neumann boundary conditions were also modified. In fact, tests have shown that
a CIBC approach that corrects both boundary conditions may exhibit worse stability characteristics
than the one that corrects the Dirichlet condition or the Neumann condition separately at each time
step. The reasons for this behavior are still under investigation.

The derivation of the residual RD for the CIBC scheme starts with the Dirichlet condition (2)
for the fluid subdomain �+, which can be differentiated with respect to time as

�T0+
�t

= �T0−
�t

(5)

Expressing (3) for the interface gives

c+
�T0+
�t

=−�q0+
�x

(6)

where c± =�±C±. Substituting (5) into (6) yields

c+
�T0−
�t

=−�q0+
�x

(7)
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Differentiating the Neumann condition for the solid subdomain �− with respect to time, we obtain

�q0−
�t

= �q0+
�t

(8)

By multiplying (8) with a dimensional coupling parameter � with the units of time/length and
adding the resulting equation to (7), we can write an expression for RD as

c+
�T0−
�t

+ �q0+
�x

+�

(
�q0+
�t

− �q0−
�t

)
=0 (9)

While (8) is satisfied at the continuum level, it is not necessarily satisfied for the discrete coupled
system based on the partitioned staggered procedure.

Relationship (9) provides an estimate for the temperature correction between the two successive
time levels n and n+1. Instead of applying T n+1

0− to the fluid subdomain as in the conventional
staggered scheme, we apply a corrected temperature value

T n
0∗ =T n

0− +�T n
0− (10)

where the temperature correction �T n
0− is obtained by discretizing (9) as

�T n
0− = �t

c+

[
−�qn0+

�x
+�

(
�qn0−
�t

− �qn0+
�t

)]
(11)

In (11), �/�x and �/�t can be simply computed using first-order accurate difference approximations.
Owing to the lack of local energy conservation in the staggered partitioned scheme compared with
the monolithic scheme, there is a non-zero value of the temperature correction �T n

0− at the discrete
time level n. A detailed analysis is presented in Appendix A.

Since the standard Dirichlet condition has been used to derive this result, temperature continuity
is still satisfied indirectly. Using (3) also ensures that the interface temperature solution satisfies
the governing differential equation, which tends to improve both the accuracy and the stability of
the interface discretization. Figure 2 illustrates the CIBC coupling algorithm for a coupled thermal
simulation. This algorithm differs from the conventional staggered scheme only in the treatment
of the Dirichlet boundary condition (10).

It is worth pointing out that since the CIBC method decomposes and combines interface
boundary conditions at the continuum level, the convergence analysis for this coupling method
can be carried out at the continuum level (i.e. in terms of PDEs) and therefore is a mathe-
matical and not a numerical analysis problem. Such a stability analysis is carried out at the
differential level using energy arguments in [12] for linearized FSI. There are several challenging
questions, however, concerning practical applications of such methods, such as finding suitable
values of the coupling parameter �. In the following section, the stability of the CIBC method
is analyzed using the Godunov–Ryabenkii method and suitable values of the coupling parameter
are determined.
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Figure 2. Schematic of the combined interface boundary conditions (CIBC) method. Step
labels 2(a)–(d) refer to Algorithm 2.

3.3. Discretization

To approximate the model equation (3) by finite differences, we divide the composite subdomain
R̄×[0, tF ] by a set of lines parallel to the x- and t-axes to form a space–time finite-difference
grid. We shall assume that the sets of lines are equally spaced and write �x and �t for the line
spacings. The derivatives in (3) are approximated by finite differences. For the model problem,
the simplest difference scheme based at the mesh point (x j , tn) uses a forward difference for the
time derivative and central difference for the second-order space derivative.
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Algorithm 2. Explicit combined interface boundary conditions method for the coupled thermal
problem

1. Start from initial temperature fields prescribed in both subdomains.
2. Generate corrected interface temperature T n

0∗ and new heat flux qn+1
0+ as follows:

(a) Advance heat equation for solid (−) subdomain

c−
�T−
�t

∣∣∣∣n =− �q−
�x

∣∣∣∣n in �−

(b) Compute interface temperature T n
0∗ using (10) and transfer it to fluid (+) subdomain

T n+1
0+ =T n

0∗ =T n
0− + �t

c+

[
−�qn0+

�x
+�

(
�qn0−
�t

− �qn0+
�t

)]
on � where ��0

(c) Advance heat equation for fluid (+) subdomain

c+
�T+
�t

∣∣∣∣n =− �qn+
�x

∣∣∣∣n in �+

(d) Apply Neumann interface condition
qn+1
0− =qn+1

0+ on �

Figure 3 describes the spatial discretization with the node numbering and interface boundary
conditions. By discretizing (3) in the (−) subdomain (x<0), we obtain

c−
T n+1
j −T n

j

�t
=�−

T n
j+1−2T n

j +T n
j−1

�x2−
( j =0−,−1,−2,−3, . . .) (12)

and, for the (+) subdomain,

c+
T n+1
j −T n

j

�t
=�+

T n
j+1−2T n

j +T n
j−1

�x2+
( j =1,2,3, . . .) (13)

In (12) and (13), �t is the matching time step size for both subdomains, and T n
j is given by

T n
j =

{
T ( j�x−,n�t) if j =0,−1,−2, . . .

T ( j�x+,n�t) if j =1,2,3, . . .
(14)

From the initial and boundary values, we can calculate all the interior and interface values for
successive values of n.
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Figure 3. Schematic of discretized subdomain and node numbering.

For the interface boundary conditions, we apply the Neumann condition on the (−) subdomain
and the Dirichlet condition on the (+) subdomain, as indicated in Figure 3. By discretizing (3)
along the interface, we obtain

c−
T n+1
0− −T n

0−
�t

=
(

−q+−�−
T n
0− −T n

−1

�x−

)
2

�x−
(15)

where the heat flux q+ is computed by a first-order approximation of the temperature gradient on
the interface

q+ =−�+

(
T n
1 −T n

0∗
�x+

)
(16)

and it is transferred to the (−) subdomain as the Neumann boundary condition with the aid of the
corrected temperature value T ∗

0 .
The fully discretized version of (10) is thus

T n
0∗ = T n

0− + �t

c+

(
�+
�x2+

(T n−1
2 −2T n−1

1 +T n−1
0+ )

+�

{
�+

�x+�t
[(T n−1

1 −T n−1
0+ )−(T n−2

1 −T n−2
0+ )]

− �−
�x−�t

[(T n
0− −T n

−1)−(T n−1
0− −T n−1

−1 )]
})

(17)

Using the explicit update, the Dirichlet boundary condition to the fluid domain is set by the
corrected interface temperature field T n

0∗

T n+1
0+ =T n

0∗ (18)
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where T0+ lags by T0∗ one iteration. Furthermore, combining (15)–(17) yields

T n+1
0+ = T n

0− + 2�t

c−�x−

{
�+
�x+

(
T n
1 −T n

0− − �t

c+

[
�+
�x2+

(T n−1
2 −2T n−1

1 +T n−1
0+ )

+�

{
�+

�x+�t
[(T n−1

1 −T n−1
0+ )−(T n−2

1 −T n−2
0+ )]

− �−
�x−�t

[(T n
0− −T n

−1)−(T n−1
0− −T n−1

−1 )]
}])

− �−
�x−

[T n
0− −T n

−1]
}

(19)

The more general case involving interface motion is analyzed in Appendix B.

4. GODUNOV–RYABENKII STABILITY ANALYSIS

The stability analysis relies on the normal-mode representation, which generalizes further the
matrix method by replacing it with local modes as a power series of quasi-eigenvectors [9]. This
constitutes a property for local analysis of the influence of boundary conditions as opposed to the
von Neumann analysis, which requires periodic conditions. In addition, it allows us to derive exact
solutions of the difference schemes and permits the analysis of the error propagation through the
space mesh.

As in [7, 8], we now apply the stability theory of Godunov–Ryabenkii [9, 17] to examine the
existence of separable normal modes of the form at node point i and time step n:

T n
j =

⎧⎨
⎩znk j

− if j�0

znk j
+ if j>0

(20)

for the difference equations (12), (13), and (19), where z is the time-amplification factor and k is
the space-amplification factor. When introduced into a numerical scheme formed by the interior
scheme and the interface conditions, we obtain a set of characteristic equations that couples the
time-amplification factor z with the space-amplification factor k.

The theory states that the interior scheme needs to be von Neumann stable in a domain and a
mode k j with |k|>1 will lead to an unbounded solution in space, which means that k j will increase
without bound when j goes to infinity. Therefore, |k| should be less than one, and the necessary
condition states that all the modes with |k|�1 produced by the interface boundary conditions
should correspond to |z|<1.

Let us now define the following non-dimensional parameters:

r ≡ c+�x+
c−�x−

(21)

d± ≡ �±�t

c±�x2±
(22)
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and

�± ≡ �±�

c±�x±
(23)

The parameters defined by (21) and (22) are equal to those used in [7, 8]. The parameters defined
by (23), which contain the coupling parameter �, arise due to the CIBC treatment of the interface
coupling.

Solving (12) for T n+1
j and applying the dimensionless parameter d−, we obtain

T n+1
j =T n

j +d−(T n
j+1−2T n

j +T n
j−1) (24)

Substituting (20) into (24), the characteristic equation becomes

z=1+d−(k−−2+k−1− ) (25)

in the (−) subdomain. Similarly, for the (+) subdomain, we obtain the characteristic equation

z=1+d+(k+−2+k−1+ ) (26)

The discretized interface relation (19) can be rewritten as

T n+1
0+ = T n

0− +2rd+
[
T n
1 −T n

0+ −�+(T n−1
1 −T n−1

0+ −T n−2
1 +T n−2

0+ )

+ d−�+
d+r

(T n
0− −T n

−1−T n−1
0− +T n−1

−1 )−d+(T n−1
2 −2T n−1

1 +T n−1
0− )

]
−2d−(T n

0− −T n
−1) (27)

by substituting the non-dimensional parameters d+, d−, �+, and r . Applying (20) to (27) yields
the characteristic relation

z = 1+2rd+[(k+−1)−�+(k+−1)(z−1−z−2)

−z−1d+(k2+−2k++1)]+2d−(1−k−1− )[�+(1−z−1)−1] (28)

The interface stability relation is then obtained by solving (25) and (26) for k− and k+, respectively,
and substituting the results into (28). k− is given by

k−1− =1− 1−z

2d−

(
1∓

√
1− 4d−

1−z

)
(29)

Similarly, the solution for k+ is

k+ =1− 1−z

2d+

(
1∓

√
1− 4d+

1−z

)
(30)
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As stated earlier, to ensure stability as j→±∞, |k+|<1 and |k−|>1. These requirements are
fulfilled by taking the negative signs in (29) and (30). Hence, we obtain

z = 1−2rd+

[
1−z

2d+

(
1−

√
1− 4d+

1−z

)]

×
{
1−�+

(
1

z
− 1

z2

)
+z−1d+

[
1−z

2d+

(
1−

√
1− 4d+

1−z

)]}

+2d−

[
1−z

2d−

(
1−

√
1− 4d−

1−z

)][
�+
(
1− 1

z

)
−1

]
(31)

which can be solved for r as

r =
z−1−2d−

[
1−z

2d−

(
1−
√
1− 4d−

1−z

)]
[�+(1−z−1)−1]

−2d+

[
1−z

2d+

(
1−
√
1− 4d+

1−z

)]{
1−�+(z−1−z−2)+z−1d+

[
1−z

2d+

(
1−
√
1− 4d+

1−z

)]} (32)

The requirement for stability is |z|<1. The solution z=1 yields trivial solution in (32). By
setting z=−1 in (32), we arrive at the following analytical stability criterion for the CIBC scheme:

r<

√
1−2d−(1−2�+)+2�+

(1−√
1−2d+)(2�++√

1−2d+)
(33)

Note that setting �+ =0 does not cause (33) to revert to the stability criterion of the CSS scheme
given by [7]. This can be simply explained from (10), where setting �=0 leads to

T n
0∗ =T n+1

0− + �t

c+
�qn+
�x

(34)

There are two points to be made about (33). Firstly, the terms multiplied by � represent information
from the interface history, while the heat-flux gradient term appearing in (33) is essentially a
higher-order spatial term that remains even when �=0. Secondly, if we set d+ =d− =0.5, which
corresponds to the maximum time step size allowed by the Courant–Friedrichs–Lewy (CFL)
condition in the fluid and solid subdomains, the stability criterion reduces to r<1 and is completely
independent of d+, d−, and �.

5. NUMERICAL RESULTS AND DISCUSSION

To assess the stability and precision of the CIBC coupling scheme and the accuracy of the
analytical stability criterion derived in the previous section, we present results of a 1D numerical
study performed with a coupled finite-difference thermal solver. The finite-difference equations
are consistent with the formulation used for deriving (33).
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The model test problem specifies a uniform temperature in each domain, 1K in the fluid
subdomain and 0 K in the solid subdomain. At time t=0, the fluid subdomain is updated with T0−
from the solid subdomain, producing the heat flux, q+. After the first time step, T0∗ , defined by (10),
is computed and used for updating the fluid subdomain (see Algorithm 2). The numerical results
obtained with the CIBC coupling scheme are compared with those obtained with the traditional
staggered scheme presented in Algorithm 1 with �=1 and �=1.

Each subdomain is 1m in length (l+ = l− =1), and we use 200 equally distributed grid
points to discretize both the subdomains. In addition, all the computations use the following
parameters:

• specific heat capacities (J/m3K), c+ =1000, c− =2000;
• thermal conductivities (W/mK), �+ =0.1, �− =0.2;
• non-dimensional final time t∗F =(tF�+/c+l2+)=(tF�−/c−l2−)=0.1.

5.1. Non-moving interface

5.1.1. Stability assessment. Figure 4(a) shows the maximum value of d+ for which a stable solution
can be maintained as the coupling parameter � changes. Here, r is chosen as 1 and d− varies from
0.35 to 0.5. In the figure, analytical stability limits obtained from (33) are denoted by the thicker
curves, the numerical results are given by symbols, and the analytical stability limits corresponding
to the conventional staggered scheme [8] are indicated by the thinner horizontal curves.

Four comments can be made about these results. First, the analytical and numerical stability
limits match very well for all cases shown here. Second, in all cases, the stability limits imposed
by the CIBC scheme are less restrictive than those corresponding to the conventional staggered
coupling method. Third, when the non-dimensional coupling parameter �+ is less than roughly
0.5, the simulation remains stable even when d+ =0.5, which is in fact the CFL limit of the fluid
(+) subdomain. For �+>0.5, the maximum d+ allowed decreases, yet remains significantly larger
than that allowed when using the traditional coupling algorithm (thinner horizontal lines). Finally,
the figure shows that, as d− increases from 0.35 to 0.5, the rate at which the critical value of d+
decreases from 0.5 is reduced. It seems counterintuitive that increasing d− should correspondingly
increase the critical value of d+, but this occurs due to the problem approaching the scenario in
which d+ =d− =0.5, where, as stated in Section 4, the stability criterion reduces to r<1.

Similar conclusions can be reached from the results shown in Figure 4(b). However, �+ has the
opposite effect on the critical value of d− as it did on d+. That is, d− =0.5 gives a stable solution
when �+ is equal to or larger than about 0.3, and decreases when �+ falls below this value. Again
we see that, when d+ =0.5, the critical value of d− is also 0.5. Unlike in the case of Figure 4(a),
however, there is not an obvious pattern in the effect of decreasing d+ from 0.5 where �+<0.3. In
all cases, the stability criterion still accurately predicts the critical value of d−. Again, the curve
corresponding to the conventional staggered scheme shows that d−crit is smaller than that observed
with the CIBC scheme. For clarity, only the conventional staggered scheme curve that represents
the maximum value of d−crit is shown.

Figures 4(c) and (d) are similar to Figures 4(a) and (b), respectively, except that r =0.75. The
two figures are qualitatively identical to their r =1 counterparts, although here the numerical values
of d+crit and d−crit have increased and the point at which �+ is able to maintain stability at 0.5
has shifted from 0.5 and 0.3 to 0.9 and 0.15, respectively. As before, the results produced by the
CIBC method are more stable than those of the conventional staggered method for the range of
coupling parameter �+ shown.
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(c) (d)

(a) (b)

Figure 4. Effect of the non-dimensional coupling parameter �+ on the stability of the
coupled scheme, i.e. on the critical values of d+ and d− beyond which instability occurs.
(a) and (b): r =1; (c) and (d): r =0.75. The curves and symbols, respectively, denote the
analytical and numerical solutions of the CIBC scheme, while the thinner horizontal lines

correspond to the stability limit of the conventional staggered scheme.

It was stated previously that, when d+ =d− =0.5, the stability criterion becomes r<1. Indeed,
as shown in Figure 5(a), a simulation in which d+ =d− =0.5 and r =1 seem to be neutrally stable.
When r<1, the simulation becomes stable, as shown in Figure 5(b), for which r =0.99. It should
be pointed out that r =1 is not a stringent stability limit since previous studies [7, 8] have shown
that the coupling algorithm should always be arranged such that the fluid subdomain is given a
Dirichlet condition and the solid subdomain a Neumann condition. In this case, for similar mesh
spacings, r is always less than unity.

Figure 6(a) shows the region of stability for various values of r for the conventional staggered
scheme. These results are compared with the results of the CIBC scheme shown in Figure 6(b).
While the stability zone of the conventional staggered algorithm only fills the entire region of
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Figure 5. Interface temperature evolution where d+ =d− =0.5 and �+ =0.5: (a) r =1 and (b) r =0.99.
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Figure 6. Effect of r on the predicted stability zones, with the stability regions lying below the curves:
(a) conventional staggered scheme and (b) CIBC with �+ =0.5.

potential stability as r →∞, Figure 6(b) shows that the CIBC scheme requires only that r<1 to
reach that scenario. As r increases from 1, the size of the stability zone shrinks for the CIBC
scheme, as it does for the conventional staggered scheme. Further, the figure illustrates that, for
the range of r considered and �+ =0.5, the CIBC scheme is more stable than the CSS scheme.

The results presented above lead to the following conclusions: Firstly, the CIBC scheme allows
the thermal FSI simulation to operate under conditions beyond the stability limit of the conventional
staggered scheme. Secondly, if r<1, the problem is stable when d+ =d− =0.5, regardless of the
choice of �+. When this is not the case, not all choices of �+ are equally suitable. Thirdly, if r =1,
optimal values of �+ from the point of view of stability seem to lie between 0.3 and 0.5.
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5.1.2. Accuracy assessment. We now turn our attention to the issue of accuracy of the new coupling
scheme, and, in particular, on the effect of the coupling parameter on the precision of the numerical
solution.

To quantify the accuracy of the coupling algorithm, we compare the numerical solution with
the exact temperature field for two semi-infinite subdomains given by [18]

T+(x, t)= �+�−1/2
D+ Ti+

�+�−1/2
D+ +�−�−1/2

D−

⎡
⎣1+ �−�−1/2

D−

�+�−1/2
D+

erf

(
x

2
√

�D+ t

)⎤⎦ (35)

and

T−(x, t)= �+�−1/2
D+ Ti+

�+�−1/2
D+ +�−�−1/2

D−
erfc

( |x |
2
√

�D− t

)
(36)

where �D± =�±/c± and Ti+ is the initial temperature of the (+) subdomain, which, for our test
problem, is chosen as 1K. The exact interface temperature is thus given by

T ex
0 = �+�−1/2

D+ Ti+

�+�−1/2
D+ +�−�−1/2

D−
(37)

To quantify the error incurred in simulations with the CSS and CIBC schemes, we take the
L2-norm of the computed interface temperature with respect to its analytical value,

�T0(t
∗
F )=

√√√√√∑n(t∗F )

k=1 (T k
0num

−T k
0ex

)2∑n(t∗F )

k=1 (T k
0ex

)2
(38)

where n(t∗F ) is the number of time steps between t=0 and t= t∗F , and T num
0k

and T ex
0k

refer to the
numerical and exact interface temperatures at time step k.

Figure 7 shows the effect of �+ on the interface error. In all cases, the error appears to be
increasing with �+�0.5 and, correspondingly, decreasing with d+ and d−, which is expected.
However, each value of d± has an optimal value of �+ to minimize interface discretization error.
In general, the optimal range of �+ is 0.1<�+<0.5.

In Figure 8(a), �T0 is given for both the CIBC and conventional staggered schemes. For the
CIBC scheme, we set �+ =0.5 and results are shown for d+ =d− =0.25, 0.4, and 0.5. On the
other hand, for the conventional staggered scheme only the results for the d+ =d− =0.25 case
are shown, as it is unstable for the other two values. Considering first the d+ =d− =0.25 case,
for which a direct comparison can be made, we note that the CIBC scheme produces slightly
more accurate results for most values of r . When r is greater than roughly 0.8, the conventional
staggered algorithm is slightly more accurate. Again, increasing d+ and d− produces an expected
increase in error, which for both cases is larger than either algorithm operating at d+ =d− =0.25.
Further, Figure 8(b) shows significant improvements in the interface accuracy, up to almost a factor
of 2 for some values of r , for �+ =0.25.

Another aspect of the CIBC algorithm and that requires study is the order of temporal conver-
gence. To that effect, we analyze the computation of �T0 at the interface for various time step
sizes by varying d±. Since material properties and grid spacings are held fixed for all cases,
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Figure 7. Effect of coupling parameter �+ on the interface error for d+ =d− =0.25,
0.4, and 0.5, r =1 and n=500.

(b)(a)

Figure 8. Comparison of error produced from the simulations using the CIBC (symbols) and the conven-
tional staggered scheme (solid curve) as r is varied and n=500: (a) �+ =0.5 and (b) �+ =0.25.

changes in the error are a direct result of varying the time step. Figures 9(a) and (b) show the
results of a temporal convergence study for r =0.5 and 1.0, respectively. For the CIBC scheme,
the measured slope of �T0 is consistently higher than 2 for the three values of �+ considered, i.e.
�+ ={0.5,0.25,0.125}. The lowest value of �+ =0.125 shows an order of accuracy greater than
4, which suggests that the temporal convergence rate can be controlled by varying the coupling
parameter. However, it is important to keep in mind that a lower limit is placed on �+ by the
stability requirements presented in Figures 4(b) and (d).
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(b)(a)

Figure 9. Dependence of the L2-norm of the interface error at t∗F for time step
refinement at n=500: (a) r =0.5 and (b) r =1.0.

Indeed, the convergence rate of the CIBC scheme is substantially higher than that provided
by the CSS scheme and individual subdomains. For this particular case, the CSS scheme has the
order of accuracy of 0.55 for r =0.5 and 1.35 for r =1.0. The temporal convergence rate for an
individual subdomain is about 1.0, which is expected for the forward Euler integration scheme.
Furthermore, the two figures together show that there is a significant effect of the parameter r
on the local temporal convergence rate, which implies that the local energy conservation error is
dependent on the ratio of physical and geometric properties across the interface.

5.2. Moving interface

The precision and stability analysis presented above for a non-moving interface can be extended to
the case of a moving interface. The main steps of the derivation are presented in Appendix B, and
the key results are shown in Figure 10, which presents the v0 dependence of the critical time step
size for the CSS and CIBC schemes. The critical time step �tc beyond which instability occurs
is normalized by the corresponding critical time step �t0 for the stationary interface given by
(32). The curves correspond to the analytical prediction of Equation (B17) for the CIBC scheme
and Equation (23) from [8] for the CSS scheme, while the symbols denote the numerical values
obtained with the CIBC scheme.

As apparent in Figure 10, the interface velocity can have a substantial impact on the stability of
the numerical solution of the coupled problem. The stability limit of the CIBC method is consistent
with the CFL condition determined by Roe [8] as

d± = (2−	±)2

8
(39)

where 	± ≡v0�t/�x±. However, the stability of the CSS scheme suffers from a larger negative
impact of the interface motion. To retain stability, the CSS scheme may require a decrease in
the time step size of up to an order of magnitude for a given value of the interface velocity. For
the whole range of coupling parameters, the CIBC scheme is able to eliminate completely the
instability associated with the interface discretization while operating at the CFL condition of both
subdomains.
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l
l

Figure 10. Effect of the interface velocity v0 on the critical time step size. �t0 denotes the critical value
of the time step for a non-moving interface as described by (32), with r =1 and �+ =0.5.

Although the analyses were performed here for the 1D model diffusion equation, the results are
expected to be applicable to more complex situations in which the 2D and 3D diffusion equation
is used to model the heat flux in the structure and the 2D/3D Navier–Stokes equations are used
to model the behavior of the fluid.

6. CONCLUSION

Typical solution methods for conjugate heat-transfer problems update the temperature field in each
subdomain by passing the fluid subdomain a temperature (Dirichlet) condition and the solid subdo-
main a heat-flux (Neumann) condition. This explicit coupling scheme is simple to implement and
can be effective. However, it suffers from the important disadvantage that the coupling introduces
a stability limit that is more restrictive than that of the two subdomains. In this paper, a new
coupling scheme for the conjugate heat-transfer problem was introduced that reduces or eliminates
this additional stability limit. The new coupling scheme consists of solving an additional PDE
on the interface. This additional equation is derived from the Dirichlet and Neumann conditions
at the interface and the governing equations in one of the subdomains and is therefore termed
the combined interface boundary condition (CIBC) method. The additional equation contains a
coupling parameter � and is solved for a correction to the predicted interface temperature.

The Godunov–Ryabenkii method was used to analyze the stability properties of the CIBC
method. The results of the stability analysis were verified using numerical tests. These tests showed
that by careful selection of � the stability zone of the coupled problem can be expanded such that
only the CFL condition of each subdomain limits the stability of the problem. The optimal value
of the non-dimensional coupling parameter, �+, seems to be approximately 0.1–0.5.

In addition to stability, the issue of accuracy of the coupled thermal algorithm was addressed. By
comparing with an analytical solution, we verified that, in many cases, the CIBC scheme is not only
more stable but also more accurate than the CSS method. Furthermore, convergence studies showed
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that the CIBC method results in an interface temperature that has a temporal convergence rate
greater than 2, in contrast to the CSS schemes, which tend to achieve only first-order convergence.

APPENDIX A: MONOLITHIC VS PARTITIONED SCHEMES

To derive the comparison of the interface treatments between the monolithic and partitioned
staggered schemes, we examine initial-value coupled thermal problem (3) using the finite-difference
technique. In the monolithic discretization, using forward Euler time differencing and conservative
spatial differencing based on the integral form of the unsteady thermal equation on the interval
x j−1/2�x�x j+1/2 gives

C j (T
n+1
j −T n

j )=−(qnj+1/2−qnj−1/2) (A1)

where qnj+1/2=−K j+1/2(T n
j+1−T n

j ) with

K j+1/2=
{

�−/�x−, j+ 1
2<0

�+/�x+, j+ 1
2>0

and

C j =

⎧⎪⎪⎨
⎪⎪⎩
c−�x−/�t, j<0

1
2 (c−�x−/�t+c+�x+/�t), j =0

c+�x+/�t, j>0

The interface continuity conditions are embedded implicitly in the governing equations with the
two-sided approximations for the heat flux. This discretization is unconditionally stable from the
viewpoint of interface treatment, i.e. the interface does not introduce any stability constraints [7].

In the partitioned staggered scheme, each part of the domain is solved independently with the
information from the other subdomain. Thus, for given solutions at time level n in both subdomains,
the explicit numerical algorithm for determining T n+1

j is with the heat-flux data for the (−) domain
and the temperature data for the (+) domain

c−
T n+1
j −T n

j

�t
= �−

T n
j+1−2T n

j +T n
j−1

�x2−
, j<0

c+
T n+1
j −T n

j

�t
= �+

T n
j+1−2T n

j +T n
j−1

�x2+
, j>0

(A2)

At the interface point ‘0’, the discretized heat-flux continuity relation takes the form

c−�x−
2

(
T n+1
0 −T n

0

�t

)
=�+

T n
1 −T n

0

�x+︸ ︷︷ ︸
−qI

−�−
T n
0 −T n

−1

�x−
(A3)
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while the temperature continuity condition reads

T n
0 =TI (A4)

where the Neumann quantity qI is computed from the one-sided approximation with the first-
order accuracy at the interface of the (+) domain and the Dirichlet quantity TI is directly applied
from the (−) domain. From (A1) and (A3), it is clear that the partitioned scheme ignores the
quantity c+�x+/2�t due to the one-sided biasing in the interface computation. If (c+�x+/2�t)	
(c−�x−/2�t), this leads to a large partitioning error in the form of interface residual thermal
energy. Consequently, the partitioned staggered scheme is conditionally stable and the stability
depends on the relative physical and discretization parameters. The Godunov–Ryabenkii’s stability
theory quantifies the propagation of instability modes associated with the partitioning error between
the two consecutive time steps for a range of r .

This analysis clearly indicates that appropriate compensation to the partitioning error is required.
The CIBC method achieves that compensation by constructing an interface differential operator
with the aid of the dimensional coupling parameter �.

APPENDIX B: ANALYTICAL STABILITY LIMIT OF THERMAL MOVING INTERFACE

As mentioned previously, the subdomains are discretized with a finite-difference scheme: forward
difference in time, a backward difference for the first spatial derivative, and a centered difference
for the second spatial derivative.

In the (−) subdomain (x<v0t), the discretized version of (1) is

c−
T n+1
j −T n

j

�t
+c−v0

T n
j −T n

j−1

�x−
=�−

T n
j+1−2T n

j +T n
j−1

�x2−
( j =0−,−1,−2,−3, . . .) (B1)

and the (+) subdomain (x>v0t), (1) takes the similar form

c+
T n+1
j −T n

j

�t
+c+v0

T n
j −T n

j−1

�x+
=�+

T n
j+1−2T n

j +T n
j−1

�x2+
( j =1,2,3, . . .) (B2)

The flux q is computed at the left edge of the (+) subdomain to be passed to the (−) subdomain
as a boundary condition. The discrete form of the heat-flux continuity condition at the interface
(x=v0t) is thus

c−
T n+1
0 −T n

0

�t
+c−v0

T n
0 −T n

−1

�x−
=
(

−q+−�−
T n
0 −T n

−1

�x−

)
2

�x−
(B3)

The flux is computed from (+) values in a first-order accurate manner as

q+ =−�+
(
T n
1 −T ∗

0

�x+

)
(B4)
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and is transferred as the imposed interface heat flux to the (−) subdomain

T n
0∗ = T n

0− + �t

c+

(
�+
�x2+

[T n−1
2 −2T n−1

1 +T n−1
0+ ]− c+v0

�x+
(T n−1

1 −T n−1
0+ )

+�

{
�+

�x+�t
[(T n−1

1 −T n−1
0+ )−(T n−2

1 −T n−2
0+ )]

− �−
�x−�t

[(T n
0− −T n

−1)−(T n−1
0− −T n−1

−1 )]
})

(B5)

Combining (B3)–(B5) yields

c−
T n+1
0− −T n

0−
�t

= 2

�x−

{
�+
�x+

[
T n
1 −T n

0− − �t

c+

(
�+
�x2+

[T n−1
2 −2T n−1

1 +T n−1
0+ ]

−c+v0

�x+
(T n−1

1 −T n−1
0+ )+�

{
�+

�x+�t
[(T n−1

1 −T n−1
0+ )−(T n−2

1 −T n−2
0+ )]

− �−
�x−�t

[(T n
0− −T n

−1)−(T n−1
0− −T n−1

−1 )]
})]

− �−
�x−

[T n
0− −T n

−1]
}

−c−v0

�x−
(T n

0− −T n
−1) (B6)

In addition to the non-dimensional parameters (21)–(23), we must define

	± ≡v0
�t

�x±
(B7)

which corresponds to the interface motion. Focusing our attention on the (−) subdomain, we solve
(B1) for T n+1

j and use the dimensionless parameters d− and 	− to obtain

T n+1
j =T n

j +d−(T n
j+1−2T n

j +T n
j−1)−	−(T n

j −T n
j−1) (B8)

Substituting (20) into (B8) yields

z=1+d−(k−−2+k−1− )−	−(1−k−1− ) (B9)

Applying the same steps to the (+) subdomain leads to

z=1+d+(k+−2+k−1+ )−	+(1−k−1+ ) (B10)
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Turning our attention to the discretized interface equation (B6), we solve for T n+1
0 to obtain

T n+1
0− = T n

0− + 2�t

c−�x−

{
�+
�x+

[
T n
1 −T n

0− − �t

c+

(
�+
�x2+

[T n−1
2 −2T n−1

1 +T n−1
0+ ]

− c+v0

�x+
(T n−1

1 −T n−1
0+ )+�

{
�+

�x+�t
[(T n−1

1 −T n−1
0+ )−(T n−2

1 −T n−2
0+ )]

− �−
�x−�t

[(T n
0− −T n

−1)−(T n−1
0− −T n−1

−1 )]
})]

− �−
�x−

[T n
0− −T n

−1]
}

− v0�t

�x−
(T n

0− −T n
−1) (B11)

or, in terms of the non-dimensional parameters d , 	, and r ,

T n+1
0− = T n

0− +2rd+[T n
1 −T n

0− −�+(T n−1
1 −T n−1

0+ −T n−2
1 +T n−2

0+ )

+ d−�+
d+r

(T n
0− −T n

−1−T n−1
0− +T n−1

−1 )−d+(T n−1
2 −2T n−1

1 +T n−1
0+ )

+	+(T n−1
1 −T n−1

0+ )]−2d−(T n
0− −T n

−1)−	−(T n
0− −T n

−1) (B12)

Substituting (20) into (B12) gives

z = 1+2rd+[(k+−1)−�+(k+−1)(z−1−z−2)−z−1d+(k2+−2k++1)+z−1	+(k+−1)]
+(1−k−1− )[2d−�+(1−z−1)−(2d−+	−)] (B13)

Expressions (B9), (B10), and (B13) provide the three equations for the three unknowns: k−,
k+, and z. To obtain an interface stability criterion, we solve (B9) and (B10) for k− and k+,
respectively, and substitute the resulting expressions into (B13). Solving (B9) for k− gives

k−1− =1− 	−
d−+	−

− (1−z−	−)

2(d−+	−)

[
1∓

√
1− 4d−(1−z)

(1−z−	−)2

]
(B14)

while (B10) yields

k+ =1− 1−z−	+
2d+

[
1∓

√
1− 4d+(1−z)

(1−z−	+)2

]
(B15)

From (20), we can see that the conditions |k+|<1 and |k−|>1 ensure that the tempera-
ture remains finite for j →±∞. These requirements are fulfilled by taking the negative signs
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in (B14) and (B15). Hence, we obtain

z = 1−2rd+

(
1−z−	+

2d+

[
1−

√
1− 4d+(1−z)

(1−z−	+)2

])[
1−�+

(
1

z
− 1

z2

)

+ z−1d+

(
1−z−	+

2d+

[
1−

√
1− 4d+(1−z)

(1−z−	+)2

])
+z−1	+

]

+
(

	−
d−+	−

+ 1−z−	−
2(d−+	−)

[
1−

√
1− 4d−(1−z)

(1−z−	−)2

])

×[2d−�+(1−z−1)−(2d−+	−)] (B16)

For stability, it is required that |z|<1. Note that z=1 produces the trivial solution, r <∞.
Therefore, the stability criterion is found by inserting z=−1 into (B16), yielding the following
inequality for stability of the CIBC coupling scheme for the moving interface case:

r<

2+
[

	−
d−+	−

+ 2−	−
2(d−+	−)

(
1−

√
1− 8d−

(2−	−)2

)]
[4d−�+−(2d−+	−)]

(2−	+)

(
1−

√
1− 8d+

(2−	+)2

)[
1+2�+−	+− 2−	+

2

(
1−

√
1− 8d+

(2−	+)2

)] (B17)

The above inequality reduces to (33) if 	+ =0. Based on the analytical stability limit given by
(B17), it is possible to determine the influence of interface motion in the stability of the CIBC
method.
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